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Abstract. Dynamic behaviour of Aharonov–Bohm-type electron interference in the presence
of a nonclassical electromagnetic field is investigated. The visibility of the time-averaged
interference pattern is discussed for SU(1,1) coherent state (CS) and a comparison with other
states is made. It is shown that the dynamic behaviour of the electron interference exhibits
collapse and revival (CR) phenomenon for SU(1,1) CS. It is also shown that CR phenomenon of
electron interference is closely related to the fluctuation of a nonclassical electromagnetic field.

1. Introduction

The Aharonov–Bohm (AB) [1, 2] effect, both electric and magnetic, has been studied
extensively for a long time. In this article our discussion is only related to the magnetic AB
effect, i.e. the production of a relative phase shift between two electron beams enclosing
a magnetostatic flux even if the electron beams are prevented from entering the region
of the magnetic flux. The effects of enclosed fluxes often appear as observable changes
in quantum interference patterns, although the fluxes may also affect the energy spectrum
and kinetic momentum eigenvalues of the electrons. The AB effect is usually explained by
means of the vector potential, which is present in multiply connected regions of space where
no magnetic induction field acts on the electrons, whereas the charge and current densities
are unique, the vector potentials are susceptible to gauge transformation. Nevertheless, the
observable AB phase shifts are gauge invariant, depending only on the magnetic flux in the
region from which the electron is excluded. Such an effect is inconceivable in classical
physics and directly demonstrates the gauge principle of electromagnetism [3]. Most of the
relevant properties of the quantum effects of fluxes can be discussed in terms of the two-slit
interference experiment with electrons. Evidence for the AB effect have been found by
Lischke [4] and Tonomuraet al [5] in such experiments.

Recently electron interference in the presence of nonclassical electromagnetic fields have
been studied [6], and the visibility of the time-averaged intensity has been discussed in a
similar way to the Shapiro steps in the context of Josephson junction [7]. A comparison
with the corresponding classical case has also been made. In the last few years there
have been a lot of theoretical and experimental works on nonclassical electromagnetic
fields, and those studies reveal many properties which are due to the quantum nature of a
nonclassical electromagnetic field and cannot be understood classically, such as squeezing,
sub-Possionian photon statistics and oscillation of the photon-number distributions etc [8]. It
is very interesting to study the effect of a nonclassical magnetic flux on electron interference.
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In this case the relative phase shift between the two electron beams is a quantum-
mechanical operator, whose expectation value with regard to the density matrix describing
the nonclassical electromagnetic field is time-dependent and has quantum fluctuations in
origin. The main idea we have in mind is that the quantum fluctuations of nonclassical
electromagnetic fields is expected to play a destructive role on the interference of the
electrons and we consider some effects, which have no counterpart in the case of a classical
electromagnetic field, that might be exhibited in such systems. In this article we will reveal
such effects, that is, the collapse and revival (CR) phenomenon in electron interference. The
so-called CR phenomenon is well known in the context of Jaynes–Cumming’s (JC) model
in quantum optics [9–11]. A two-level atom interacting with a nonclassical electromagnetic
field is known as a JC model [9], in which Eberlyet al [10] have theoretically found CR
in the time evolution of atomic inversion. Evidence for CR has also been found by Rempe
et al [11].

2. Electron interference in the presence of a nonclassical electromagnetic field

The derivation of the expressions for the phase shift in magnetic AB effects is well known
but for the convenience of our discussion we briefly summarize the main results. In the usual
AB experiment, an electron wave is split into two coherent waves. They pass on opposite
sides of a solenoid and then recombine. The wavefunction of the electron splits into two
partsψ = ψ1 + ψ2, whereψ1 represents the beam on one side of the solenoid andψ2 the
beam on the opposite side. Each of these beams stays in an opposite simply connected
region. (In the following we will use the system of units in which ¯h = c = kB = 1, and
the charge of the electron is dimensionless and is equal toe = √4π/137.) We can write
ψ1 = ψ0

1e−iS1, ψ2 = ψ0
2e−iS2, whereS1 andS2 are equal toe

∫
A ·dl along the paths of the

first and second beams, respectively, andψ0
1 andψ0

2 are the wavefunctions of the electrons
whenA = 0. The intensity of the electrons at some pointR on the screen is

I (R) = |ψ1+ ψ2| = |ψ1|2+ |ψ2|2+ 2|ψ1ψ2|Re{exp[i(σ +1S)]} (1)

whereσ = arg(ψ0
1)−arg(ψ0

2) and is a function ofR. As the pointR moves along the screen,
the phase differenceσ changes, and we obtain the interference pattern. The interference
between the two beams will evidently also depend on the phase shift1S. The phase shift
1S, in this case is given by

1S = e
∮
A · dl = eφ0. (2)

Here, the integral is carried out along a closed curve connecting the two paths. Although
the magnetic fieldB is zero everywhere outside the solenoid, the vector potentialA cannot
vanish there. This is because the loop integral ofA around the solenoid is equal to the
magnetic fluxφ0 =

∫
B · ds inside it. Therefore a nonzero phase shift can be observed.

An experiment in the case of nonclassical electromagnetic fields at a low temperature
similar to the usual AB experiment was proposed in [6]. The low-temperature requirement
makes the thermal fluctuations smaller than the quantum fluctuations. In the experiment
a beam of electrons is split into two (for example, by using an electrostatic biprism) and
then each of the beams enters a waveguide through one hole and exits through another,
respectively, in which the nonclassical electromagnetic field is travelling (see [6, figure 2]).
The magnetic field is perpendicular to the plane of the paths of the two beams, while the
electric field is on the plane. In such an experiment the electrons feel both an AC vector
potentialA and an AC electric fieldE. Integration ofA andE in a closed loop around
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the flux gives the magnetic fluxφ, and the electromotive forceV , correspondingly. Now
φ andV are quantum operators and obey the commutation relation:

[φ, V ] = iω (3)

and

a = 2−1/2[φ + iω−1V ] (4)

a+ = 2−1/2[φ − iω−1V ] (5)

[a, a+] = 1 (6)

wherea+, a are the corresponding creation and annihilation operators of the nonclassical
electromagnetic field with frequencyω. The Hamiltonian of a one-mode electromagnetic
field is assumed to be

H = ω(a+a + 1
2). (7)

Using the Hamiltonian (7), we can obtainφ in the Heisenberg picture as follows

φ(t) = 2−1/2[exp(iωt)a+ + exp(−iωt)a]. (8)

Here the external field is treated as free for the case of weak electron currents. In the case
of a nonclassical electromagnetic field, equation (1) becomes

I (R, t) = Tr{ρ|ψ1+ ψ2|2} = |ψ1|2+ |ψ2|2+ 2|ψ1ψ2|Re{exp(iσ)Tr[ρ exp[ieφ(t)]]} (9)

whereρ is the density matrix of the nonclassical electromagnetic field. Apart from the
nonclassical electromagnetic field, a classical fluxV0t is also imposed which produces a
static electromotive forceV0. This can be achieved by using a solenoid with a current that
increases linearly as a function of time. Then from equations (8) and (9) we obtain

I (R, t) = |ψ1|2+ |ψ2|2+ 2|ψ1ψ2|Re{exp[i(σ + eV0t)]

×Tr[ρD[2−1/2e exp(iωt + iπ/2)]]} (10)

whereD(A) = exp(Aa+ − A∗a) is the displacement operator.
In [6] several examples of density matrixesρ are considered and it is concluded that

the time-averaged interference fringes exist only for special values ofV0 which depend
on the nature of the applied nonclassical electromagnetic field. An SU(1,1) coherent state
(CS) field is another type of nonclassical field which has been widely studied [12], and in
this paper we are interested in the effects of its nonclassical characteristics on the dynamic
behaviour of electron interference. The realization for the SU(1,1) Lie algebra for a single
mode isK0 = (a+a+ aa+)/4,K+ = a+2/2, andK− = a2/2. An SU(1,1) CS is defined as
S(β)|q, k〉, where

S(β) = exp( 1
2β
∗a2− 1

2βa
+2) (11)

is the squeeze operator withβ = |β|e−iϕ , and |q, k〉 is the basis withk = 1
4 or k = 3

4,
q = 0, 1, 2, . . .. For this state the Hilbert space|n〉, where|n〉 is the usual number state, is
split into two spaces, one fork = 1

4, n = 2q (even), and one fork = 3
4, n = 2q+1 (odd). In

fact all the squeezed number states (SN) can be interpreted as generalized SU(1,1) CS, which
are generated by applying the operatorS(β) to any state fork = 1

4 or 3
4. For simplicity

the generalized SU(1,1) CS, or the SN,S(β)|m〉, is considered in the following where|m〉
denotes the usual number state and may be produced by the action of a nondegenerate
parametric amplifier on the number state [12]. The photon number distribution for this state
is oscillatory with zero probability for oddn (m = even) or for evenn (m = odd). The
squeeze operatorS(β) transforms the annihilation operator as follows

S+(β)aS(β) = cosh(|β|)a − exp(−iϕ) sinh(|β|)a+. (12)
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For a pure SN the density matrixρ = S(β)|m〉〈m|S+(β), and it can be derived from
equations (10) and (12) that

I (R, t) = 1+ Re{exp[i(σ + eV0t)]

×
∑
n

〈n|S(β)|m〉〈m|S+(β)D[2−1/2e exp(iωt + iπ/2)]|n〉}

= 1+ Re{exp[i(σ + eV0t)]〈m|S+(β)D[2−1/2e exp(iωt + iπ/2)]S(β)|m〉}
= 1+ Re{exp[i(σ + eV0t)] exp[−Y (t)]Lm[2Y (t)]} (13)

whereLm(x) are the Laguerre polynomials and

Y (t) = e2

4
[cosh(2|β|)− sinh(2|β|) cos(2ωt + ϕ)]. (14)

In deriving equation (13) we have used the formula

〈m|D(A)|m〉 = exp(−|A|2/2)Lm(|A|2) (15)

and for simplicity we have assumed that|ψ1| = |ψ2| = 1/
√

2. Using formula
exp(A cosθ) =∑∞n=−∞ In(A) exp(inθ) we can expand equation (13) into

I (R, t) = 1+ exp[−e2 cosh(2|β|)/4]Re

×
{ ∞∑
n=−∞

In[e
2 sinh(2|β|)/4] exp{i[(eV0+ 2nω)t + σ + nϕ]}Lm[2Y (t)]

}
(16)

whereIn(x) is the modified Bessel function. Noting thatLm(x) =
∑m

k=0

(
m

k

)
(−x)k/k!

[13], taking into account the following relations:(a + b)k = ∑k
l=0

(
k

l

)
albk−l , cosx =

(eix + e−ix)/2, and after some trivial transformations, we can rewrite equation (13) as

I (R, t) = 1+ Re

{
exp[−e2 cosh(2|β|)/4]

∞∑
n=−∞

m∑
k=0

k∑
l=0

l∑
p=0

In[e
2 sinh(2|β|)/4]

×
(
m

k

)(
k

l

)(
l

p

)(
1

2

)l
Lk−lMl/k!ei{[2(2p−l+n)ω+eV0]t+σ+(2p−l+n)ϕ}

}
(17)

whereM = e2 sinh(2|β|)/2, L = −e2 cosh(2|β|)/2. It is easy to see from equation (17)
that when the following condition is satified

eV0 = 2Nω (18)

we can take the time average of equation (17) and obtain

I (R) = 1+ exp[−e2 cosh(2|β|)/4]
m∑
k=0

k∑
l=0

l∑
s=0

Il−N−2s [e
2 sinh(2|β|)/4]

×
(
m

k

)(
k

l

)(
l

s

)(
1

2

)l
Lk−lMl/k! cos(Nϕ − σ). (19)

The phase differenceσ changes withR, so it is easy to see from equation (19) that asR

moves along the screen we obtain an interference pattern. The visibility of the interference
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fringes can be derived from equation (19)

α = exp[−e2 cosh(2|β|)/4]
m∑
k=0

k∑
l=0

l∑
s=0

Il−N−2s [e
2 sinh(2|β|)/4]

×
(
m

k

)(
k

l

)(
l

s

)(
1

2

)l
Lk−lMl/k!. (20)

When equation (18) is not satisfied, time averaging will destroy the interference pattern.
From [6] we learn that the voltage steps for squeezed-vacuum states are double in size in

comparison with the voltage steps for coherent and squeezed states. From equation (18) we
can conclude that the voltage steps for SN are the same as the voltage steps for squeezed-
vacuum states which are double in size in comparison with the voltage steps for coherent
and squeezed states. Actually squeezed-vacuum states are just a special case of SN for
m = 0.

3. Collapse and revival in the electron interference

With regards to the usual AB experiment, electron interference in the presence of a classical
magnetostatic flux has been fully discussed, and in this case the flux is definitely without
fluctuations. In the case of a nonclassical electromagnetic field the flux is a quantum
operator whose expectation value has quantum fluctuations. It is the quantum fluctuations
of flux φ that will partially destroy the electron interference. To see how the quantum noise
of nonclassical electromagnetic fields affect the phase shift and hence the corresponding
electron interference, we will study the time evolution of electron intensity.

We plot the time evolution of electron intensity versus the scaled timeωt/π for various
values of |β| and m, and for fixedR and other parameters in figure 1. In numerical
calculations we found that when|β| is small, the oscillations of electron intensity appear
to be almost regular, with no true CR; when|β| is increased, we notice that CR occurs
with incomplete collapses and essentially complete revivals as figure 1(a) shows; when
|β| is large enough, CR occurs with complete collapse, as figures 1(b) and (c) show; with
increasing|β| CR becomes more and more compact and distinct, and the time between
revivals also increases. Form = 0, i.e. the squeezed-vacuum state, the frequency iseV0

during the revivals, which means that perfect and complete oscillations are indeed essentially
sinusoidal as figures 1(a) and (b) show. Asm is increased, we observe increasingly irregular
behaviour of the oscillations, see figure 1(c).

It can be inferred from equation (19) that forϕ = 0 whenσ(R1) = 0, I (R1) reaches its
maximum 1+ α; whenσ(R0) = π/2, I (R0) = 1; and whenσ(R2) = π , I (R2) reaches its
minimum 1− α, whereα is the visibility. In figure 2 we plot the time evolution ofI (R, t)
for σ(R1) = 0 andσ(R2) = π , using the same parameters as in figure 1(c). Comparing
figure 1(c) with figure 2 we can see thatI (R, t) simultaneously collapse to 1 in the collapse
period independent ofσ(R), this means that although the time-averaged interference pattern
is unchanged, it will completely disappear in this period. Then in the revival period, the
time-averaged electron intensities over this period are bigger than 1 forσ(R1) = 0 (see
figure 2(a)), less than 1 forσ(R2) = π (see figure 2(b)) and equal to 1 forσ(R0) = π/2
(see figure 1(c)). This means that the interference pattern reappears and the process is
periodically repeated. So, if we are able to observe the time-dependent interference pattern
(this might be realized with a clever stroboscopic measurement in the spirit of [14]) we
would be able to directly observe the CR in the experiment.
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Figure 1. Plot of electron intensity versus scaled timeωt/π for σ(R0) = π/2, ϕ = 0,
eV0/ω = 12, and for, (a) |β| = 1, m = 0; (b) |β| = 3, m = 0; (c) |β| = 3, m = 2.

Figure 2. Plot of electron intensity versus scaled timeωt/π for |β| = 3, ϕ = 0, eV0/ω = 12,
m = 2, and for (a) σ = 0; (b) σ = π .

The collapses are easily understood. It can be seen from equation (14) thatY (t) is
always bigger than zero and is an oscillating function with a period ofπ/ω. Thus the second
term in equation (13), which represents the interference between the two electron beams
and determines the interference pattern, is weighted with a time-dependent factor which
periodically supresses the coherence of the electrons. The factor exp[−Y (t)] is intimately
related to the quantum fluctuation of the nonclassical electromagnetic field and causes
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partial destruction of the interference. The maximum ofY (t) is Ymax = e2[cosh(2|β|) +
sinh(2|β|)]/4 for fixed |β|. For small |β| the minimum of exp[−Y (t)](= exp(−Ymax))

is not small enough, we obtain the incomplete collapse as figure 1(a) shows. When|β|
is large enough, CR occurs with complete collapse, and now cosh(2|β|) ' sinh(2|β|) '
exp(2|β|)/2, the collapse function can be found from equations (13) and (14) as

exp

[
−e

2

4
exp(2|β|) sin2(ωt + ϕ/2)

]
(21)

and the collapse timeτc can also be found from equation (21)

τc = 2 exp(−|β|)/(ωe). (22)

It is clear that when|β| is increased, the collapse time becomes shorter, which is proportional
to exp(−|β|) while the period of CR is fixed to unity in the scaled time. For large|β|,
equations (21) and (22) are consistent with the numerical calculations.

CR phenomenon of electron interference can be explained as a consequence of quantum
interference in phase space. One can see that the summation in equation (17) represents
oscillations with different freqencies due to the effect of a nonclassical electromagnetic field.
Because different components in the summation oscillate with different frequencies, they
will become decorrelated with a range of the frequency that makes a significant contribution
to the sum, i.e. the collapses are due to the destructive interference of oscillations with
different frequencies in equation (17). The revivals are a manifestation of the quantum
nature of a nonclassical electromagnetic field, which is mathematically reflected in the
discrete summation, that means the evolution of the electron intensity is determined by the
individual field quanta. The discrete characteristic ensures that after some finite time all
oscillating terms almost come back in phase with each other, restore the coherent oscillations,
and give an appreciable value to electron intensity.

When V0 = 0, the electron intensity can also exhibit CR phenomenon for this state,
as figure 3 shows. When a nonclassical electromagnetic field is not present, the voltage
V0 will bring about an oscillation with frequencyeV0. When bothV0 and a nonclassical
electromagnetic field are present, the interaction between the oscillation with frequencyeV0

Figure 3. Plot of electron intensity versus scaled timeωt/π for σ = 0, ϕ = 0, V0 = 0,
|β| = 3.5, and for, (a) m = 2, (b) m = 6.
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and the oscillation due to the nonclassical electromagnetic field leads to the appearance
of CR phenomenon and the time-averaged interference pattern with a proper value ofV0.
However, whenV0 = 0, the external nonclassical electromagnetic field brings about an
oscillation with a basic frequency of the external field and its harmonics, which can be
easily seen from equation (17) withV0 = 0. In this case it is the contribution of the
coherence of the infinite harmonics that bring about CR phenomenon, as figure 3 shows,
and CR is entirely due to the coherence of the external field.

It is worth noting that the number state is a special case of SN for|β| = 0. For the
number state from equation (13) we can easily obtain

I (R, t) = 1+ exp(−e2/4)Lm(e
2/2) cos(eV0t + σ). (23)

It is apparent that there is no CR phenomenon that exists for this state. The number state
and the classical field share the property of a definite intensity which is needed to avoid the
interferences leading to a collapse. For number states the photon number is definite, but
the phase is indefinite, and is closely related to the particle nature of radiation rather than
its wave nature. By squeezing the number state the determinstic photon number is blurred,
and the quadrature is squeezed in one direction, and the state becomes phase dependent.

4. Quantum fluctuations in electron interference

As mentioned above, in the case of a nonclassical electromagnetic fieldφ is a quantum
operator whose expectation value has quantum fluctuations. Now we are interested in the
quantum fluctuations of the operatorf ≡ Re{exp[i(eφ+eV0t+σ)]} whose expectation value
determines the dynamics of the electron interference, and we will show in the following
that the CR phenomenon of an electron interference is closely related to the fluctuation of
such an operator. The fluctuation of the operatorf is defined as

〈(1f )2〉 = 〈f 2〉 − 〈f 〉2. (24)

For SN from equations (8), (12), (15) and (24) we can obtain

〈(1f )2〉 = 1
2 + 1

2 exp[−4Y (t)]Lm[8Y (t)] cos(2eV0t + 2σ)

− exp[−2Y (t)]L2
m[2Y (t)] cos2(eV0t + σ). (25)

In figure 4 we display some examples of time evolutions of quantum fluctuations of
operatorf for the same parameters as figure 1 for SN. From numerical calculation we
reach the following conclusion: the time evolution of the electron interference brings about
fluctuation reduction inf , the minimum fluctuations off occurring when the electron
intensity is revived to its maximum; the maximum of fluctuations is achieved at the collapse
period, where electron intensity reaches its steady value, which is equal to 1 at anyR on
the screen (nowI (R, t) is independent ofσ or R) that is, the complete destruction of
the interference fringe. This can be easily understood, because the fluctuations have their
origin in the destructiveness of quantum interference of different oscillations, i.e. a rise in
fluctuations means that different oscillations begin to partially lose their correlations, and
when the fluctuations are smallest, different oscillations are mostly correlated.

5. Conclusion

We have investigated the dynamic behaviour of AB-type electron interference in the presence
of a nonclassical electromagnetic field. In this case the relative phase shift between the two
electron beams is a quantum operator and its expectation value determines the dynamics of
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Figure 4. Plot of the fluctuation of the operatorf , 〈(1f )2〉, versus scaled timeωt/π for the
same parameters as in figure 1. Note that, compared with figure 1 the electron intensity is
revived to its maximum atωt = nπ , n an integer, where the fluctuations of the operatorf are
smallest.

electron interference. The time-averaged interference fringes exist only for special values
of V0 which depends on the nature of the applied nonclassical electromagnetic field. We
have found that for SN the voltage steps are the same as those for squeezed-vacuum states
which are double in size in comparison with the voltage steps for coherent and squeezed
states.

We have also shown that the dynamic behaviour of the electron interference exhibits
CR for SN while for number state this phenomenon does not exist. CR cannot be achieved
by the interaction of electrons with a classical electromagnetic field of constant amplitude
and phase, nor can it be established by interaction of electrons with the particle aspects of
a photon alone. We have found that CR is due to the interaction of electrons with both
wave and particle aspects of photons. We recollect here that CR is a purely quantum effect
which is due to the quantum nature of the field.

It is also shown that CR of electron interference is closely related to the the fluctuation
of a nonclassical electromagnetic field. By studying the fluctuation of the operator
f = Re{exp[i(eφ + eV0t + σ)]} we have found that the minimum fluctuations of the
operatorf occurs for SN when the electron intensity is revived to its maximum, and the
maximum fluctuation is achieved at the collapses time where the electron intensity collapses
to 1. The complete collapse leads to the complete destruction of the interference fringe. This
is because the fluctuations have their origin in the destructiveness of quantum interference.

We hope the results obtained in this paper can find their applications in the future, for
example, we can use the AB-type experiment to study the nonclassical electromagnetic field.
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